Acceptance of a COVID-19 vaccine and its related determinants among the general adult population in Jeddah, Saudi Arabia

Fathi El-Gamal (1) Amira Mohammed (2) Assmaa Shaker (2) Noor Aljohani (2) Yara Alasli (2)

(1) Professor and chairman of the Family Medicine Department, at Ibn Sina national college for medical studies, Jeddah, KSA(2) Ibn Sina national college for medical studies, Jeddah, KSA

Corresponding author:

Prof. Fathi M. El-Gamal, Department of Family Medicine, Ibn Sina National College. Al Mahjer Street. Jeddah, Kingdom of Saudi Arabia. P.O. Box 31906 Jeddah 21418 Tel: 6356555-6355882 / Fax: 6375344 **Email:** drfathimhelgamal1996@hotmail.com

Received: June 2022 Accepted: July 2022; Published: August1, 2022. Citation: Fathi El-Gamal et al. Acceptance of a COVID-19 vaccine and its related determinants among the general adult population in Jeddah, Saudi Arabia. World Family Medicine. 2022; 20(8): 54-69 DOI: 10.5742/MEWFM.2022.9525120

Abstract

Background: Coronavirus disease 2019 (COV-ID-19) is a global pandemic caused by a highly infectious respiratory virus (SARS-CoV-2). With all the consequences that threaten the health of the individual and society due to this infection, it has become necessary to have a vaccination that limits the spread of this virus.

Objectives: To assess the acceptance of COVID-19 vaccines in Saudi Arabians and to uncover the barriers associated with vaccination.

Method: This was a cross-sectional study of 518 subjects, who gave their responses through an online Google form. Data were analyzed using SPSS software version 23. The level of significance was 0.05%.

Results: The vaccine acceptance rate was 68.7%; it was significantly more common among people in Makkah city, among those with high income, and those with relatives who had the COVID-19 infection. The majority of those who accepted the vaccine were advised by health care workers (p < 0.05).

Sound knowledge, attitude and practice were significantly behind increased acceptance of the vaccination against COVID-19 infection. Health care workers have a significant role in convincing people to accept the vaccine. Web sites and smartphones are important channels to increase the acceptance of the population.

Conclusions: About one-third of the population did not accept the vaccine, particularly, those with low income. Increasing the knowledge of the people about the clinical aspects, and health impact of the virus of COVID-19 on the community are important intervention tools to increase the acceptance rate of COVID-19 vaccination among the population.

Keywords: COVID-19, KAP, clinical aspects and acceptance of COVID-19 infection.

Introduction

Coronavirus disease 2019 (COVID-19) is a global pandemic caused by a highly infectious respiratory virus (SARS-CoV-2). (1) In the spring of 2020, governments worldwide implemented precautionary measures, such as social distancing, quarantine, and mask-wearing, to control the spread of the disease (2). The COVID-19 pandemic led to more than 108 million confirmed cases of COVID-19 and over one million deaths around the world (3, 4). In the Kingdom, COVID-19 caused a total of 341,495 laboratoryconfirmed cases with 5144 deaths (5). COVID-19 can cause a wide range of symptoms, from asymptomatic to mild flulike symptoms to acute respiratory distress syndrome and death (3-5). COVID-19 has also been linked to long-term lung, cardiac and neurological conditions (6). A systematic review of 53,000 hospitalized patients indicated that 20.2% of COVID-19 cases developed severe disease with a mortality rate of ~3.1% (7). In the elderly and among those with comorbidities, such as cardiovascular disease, chronic kidney disease, and chronic obstructive pulmonary disease, mortality increases significantly (8). Covid-19 also has a negative impact on mental health. In a study conducted in Saudi Arabia during the initial phase of the COVID-19 pandemic, more than 29% of the respondents had moderate-to-severe depression, and 26.6% reported moderate-to-severe anxiety (9). With all these consequences that threaten the health of the individual and society, it has become necessary to have a vaccination that limits the spread of this virus. KSA planned early COVID-19 vaccination to the population as soon as a safe and effective vaccine became available. The same day that the Phase III trial of the Pfizer-BioNTech COVID-19 vaccine was published, the SFDA (Saudi Food and Drug Authority) imparted emergency use authorization to the vaccine. On December 16, 2020, KSA received its first two shipments of BNT162b2 then it immediately started free of charge campaigns to vaccinate KSA populations (10). KSA planned a phased approach vaccination program. The initial phase targeted the most vulnerable group as healthcare workers (HCWs), people with comorbid diseases, and the elderly. The second and third phases targeted all populations, to vaccinate at least 70% (11).

Any vaccination program's success is determined by the percentage of the population that are willing to be vaccinated. Vaccine hesitancy (delay in acceptance or refusal of vaccination) is a complex issue and the factors influencing this condition are highly variable across populations. Vaccine hesitancy has been linked to several factors, including the vaccine's side effects, misconceptions about the need for vaccination, a lack of trust in the health system and the vaccine's safety and efficacy (12). The percentage of the general populations' COVID-19 acceptance varied from one research to another. Only 45 percent of 3,100 people in a study conducted among the Saudi population said they would be willing to have the COVID-19 vaccine (13). Another public survey in Saudi Arabia with almost 1000 participants showed a 65% acceptance rate (14). In A recent national cross-sectional survey in KSA of 1512 HCWs, 70% were willing to receive

a COVID-19 vaccine (15). In another cross-sectional study of 673 HCWs in KSA, 50.52 % said they would be willing to get the COVID-19 vaccination, with 49.71% saying they would get it as soon as it became available in the country and 50.29% saying they would wait until the vaccine's safety is confirmed (16).

Many factors have affected vaccine acceptability, for example, gender differences. Male gender was a positive predictor for acceptance of COVID-19 vaccination (17, 18). A study reported that those aged 45 years and above, and being married, are more likely to accept the COVID-19 vaccine than their counterparts (14). Another study demonstrated that younger participants tended to be more accepting of vaccination in contrast with older participants (19). One of the strongest factors of vaccine acceptability was whether participants thought their healthcare provider would recommend they get vaccinated against COVID-19 or not (20). Another important factor was that people who thought they were at a higher risk of catching COVID-19 were more willing to accept the vaccine, but only for the 95 percent effective vaccine. A positive attitude toward immunization is linked to a perception of danger or susceptibility to infection (21-23). Adequate vaccine coverage and high vaccine uptake rates in the population are required for COVID-19 immunization to be successful. Recent studies have documented uncertainties regarding the COVID-19 vaccine as a result of the public's mistrust of authority and the presence of scientific illiteracy regarding the virus and phases of development of the vaccine, and misinformation transmitted via social media (24). Thus, this study aimed to assess the acceptance of COVID-19 vaccines in Saudi Arabia and to uncover the barriers associated with vaccination.

Methodology

It was a cross-sectional study; the sampling method was a non-probability convenient one. Data were collected, through an online Google form, on residents of Saudi Arabia. Sample size was determined using G*power software, where α = 0.05, Power = 0.95 effect size = 0.3, and degree of freedom= 5 (25). The minimal sample size required was 277 subjects; thus, 518 subjects were enrolled in the present study. Data were collected using a structured questionnaire that provided information on socio-demographic and personal characteristics, and detailed information on COVID-19 infection and vaccination. The questionnaire included questions about COVID-19 infection, and its clinical aspects, its impact on health, life style and the community. It also included questions on the knowledge, attitude and practice (KAP) towards the acceptance of the COVID-19 vaccine for its impact on health and the barriers and fake news about it. The software SPSS (IBM compatible version 23) was used to analyze the data. Chi-square test was used to analyze the data. The level of significance for the present study was 0.05%.

Availability of the data: the raw data is available at the research center of ISNC and all results of the data are included in the paper.

Results

The present study included 518 subjects (67.2% females, while 32.2% were males). The majority of the respondents were aged 18 to 29 years (65.6%), while those older than 64 years were only 1.4%. Those aged 30 to 40, or 50 to 64 years old, were 16.2% and 18.8% respectively. Table 1 shows distribution of the studied subjects by acceptance of COVID-19 vaccination and sociodemographic characteristics and factors affecting it. Gender and nationality were not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). The percentage of subjects who accepted the vaccine from Makkah region (75%), was higher than those who didn't, from the same region, (p < 0.05). Educational level was not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). The percentage of subjects who accepted the vaccine from those having monthly income over 15,000 SR (40.4%), was higher than those who didn't, where p < 0.05. The percentage of subjects who accepted the vaccine from those who have a chronic condition (26.1%), was higher than those who didn't, where p < 0.05. The percentage of subjects who accepted the vaccine from people who took the COVID-19 test (64.0%), was higher than those who didn't where p < 0.05. Getting COVID-19 infection was not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). The percentage of subjects who accepted the vaccine from people who have relatives infected with COVID-19 (91.9%), was higher than those who didn't where p < 0.05. The percentage of subjects who accepted the vaccine from those who think that health care providers will advise them to get the COVID-19 vaccine (96.3%), was higher than those who didn't where p < 0.05. Knowledge level about COVID-19 was not significantly associated with acceptance of COVID-19 vaccination (p > 0.05).

Table 2 shows the distribution of studied subjects by acceptance of COVID-19 vaccination and their knowledge about it and factors affecting it. The percentage of subjects who accepted the vaccine from those who believe that COVID-19 in 65 years old subjects is dangerous (88.2%), was higher than those who didn't where p < 0.05. The percentage of subjects who accepted the vaccine among those who believe that COVID-19 spread among subjects (98.3%), was higher than those who didn't where p < 0.05.

The percentage of subjects who accepted the vaccine from those who don't believe that COVID-19 is caused by the Flu virus (65.4%), was higher than those who didn't where p < 0.05. The percentage of subjects who accepted the vaccine from those who don't know if COVID-19 is caused by the Flu virus (22.8%), was higher than those who didn't where p < 0.05. The percentage of subjects who accepted the vaccine from those who don't think that COVID-19 always show signs and symptoms of being sick (86.2%), was higher than those who didn't, where p < 0.05. The idea that people who get COVID-19 only have mild symptoms was not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). The idea that people who get COVID-19 will have fever, cough,

shortness of breath, runny nose, headache, fatigue, diarrhea, rash on face, blurry vision, earache, and hair loss, was not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). The percentage of subjects who accepted the vaccine among those who believe that COVID-19 can cause muscles or body ache (79.8%), was higher than those who didn't, where p < 0.05. The percentage of subjects who accepted the vaccine among those who believe that COVID-19 can cause he vaccine among those who believe that COVID-19 can cause loss of smell or taste (92.7%), was higher than those who didn't, where p < 0.05.

Table 3 shows distribution of studied subjects by Acceptance of COVID-19 Vaccination and knowledge about COVID-19 infection and factors affecting it. The percentage of subjects who accepted the vaccine from those who stated that they can't get the infection again (87.4%), was higher than those who didn't admit that (78.4%), where p < 0.05. The amount of information about COVID-19 and sources of information about COVID-19 were not significantly associated with acceptance of COVID-19 vaccination (p > 0.05).

The percentage of subjects who accepted the vaccine from those who trust national news as a source of information about COVID-19, (42.1%), was significantly higher than those who didn't where the p < 0.05. The percentage of subjects who accepted the vaccine from those who received the same information on COVID-19 across different courses, (69.1%), was higher than those who didn't, (p < 0.05). The percentage of subjects who accepted the vaccine from those who didn't, (p < 0.05). The percentage of subjects who accepted the vaccine from those who received a little fake information about COVID-19, (36.2%), was higher than those who didn't (p < 0.05).

The percentage of subjects who accepted the vaccine from those who received moderate fake information about COVID-19, (36.8%), was higher than those who didn't p < 0.05. The percentage of subjects who accepted the vaccine from those who think that COVID-19 comes from animals, (42.1%), was higher than those who didn't (p < 0.05). The percentage of subjects who accepted the vaccine from those who tested to see if they have COVID-19 (61.2%), was higher than those who didn't, t (p < 0.05).

Table 4 shows the distribution of studied subjects by Acceptance of COVID-19 Vaccination and knowledge about COVID-19 infection and factors affecting it. The amount of information told by the doctor that you have COVID-19, and a relative diagnosed with COVID-19 was not significantly associated with acceptance of COVID-19 vaccination (p > 0.05).

The percentage of subjects who accepted the vaccine from those who did not think that they had COVID-19 because of symptoms but they had never tested (74.7%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine among those who moderately think that COVID-19 is a threat to physical health (36.5%), was higher than those who didn't the p < 0.05. COVID-19 as a threat to mental health and financial safety was not significantly associated with acceptance

of COVID-19 vaccination (p > 0.05). The percentage of subjects who accepted the vaccine from those who had a major thought that COVID-19 is a threat to the health of Saudi Arabia's population (33.1%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine among those who moderately think that COVID-19 is a threat to the local community (42.7%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine among those who majorly think that COVID 19 is a threat to the local community to the local community (23.6), was higher than those who didn't the p < 0.05.

Table 5 shows the distribution of studied subjects by Acceptance of COVID-19 Vaccination and Practice and factors affecting it. Fear of getting COVID-19 was not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). The percentage of subjects who accepted the vaccine from those who stated that they worry about friends and family due to COVID-19 (78.4 %), was higher than those who didn't where p < 0.05. Experiencing boredom, frustration, anxiety, depression, sleeping trouble, increased or decreased sexual activity, loneliness, and confusion due to COVID-19 were not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). Table 6 reveals the distribution of studied subjects by Acceptance of COVID-19 Vaccination and attitude and factors affecting it. The chance of getting COVID-19 in the future was not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). The percentage of subjects who accepted the vaccine from those who stated that it would be moderately serious if they got COVID-19 (37.1%), was higher than those who didn't and the percentage of subjects who accepted the vaccine from those who stated that it would be very serious if they got COVID-19 (13.5%), was higher than those who didn't the p < 0.05. Needing normal routines instead of worrying about protective behavior was not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). The percentage of subjects who accepted the vaccine from those who strongly agree that It's a crime if people know they have COVID-19 and don't do protective behaviors (78.9%), was higher than those who didn't admit that the p < 0.05. The percentage of subjects who accepted the vaccine among those who strongly agree that people who test positive for COVID-19 should be isolated (84.3%), was higher than those who didn't admit that the p < 0.05. The percentage of subjects who accepted the vaccine from those who stated that they would be willing to get the COVID-19 vaccine if it was free (100.0%), was higher than those who didn't admit that; the p < 0.05. The percentage of subjects who accepted the vaccine from those who stated that Doctors would recommend taking the COVID-19 vaccine (97.5%), was higher than those who didn't admit p < 0.05. The percentage of subjects who accepted the vaccine from those who stated that they disagree with If they decided to get the COVID-19 vaccine it would be hard to find a provider or clinic (32.9%), was higher than those who didn't and the percentage of subjects who accepted the vaccine from those who stated that they strongly disagree with If they decided to get the COVID-19

vaccine it would be hard to find a provider or clinic (24.7%), was higher than those who didn't where p < 0.05.

Table 7 shows the Distribution of studied subjects by Acceptance of COVID-19 Vaccination and attitude and factors affecting it. The percentage of subjects who accepted the vaccine from those who strongly agree that the COVID-19 vaccine might have side effects, like fever or soreness in the arm (55.9%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine of those who agree that COVID-19 might have side effects, like fever or soreness in the arm (38.8%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine from those who think that COVID-19 vaccine effectiveness is moderate (59.0%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine from those who think that COVID-19 vaccine effectiveness is high (27.8%), was higher than those who didn't; the p < 0.05. The percentage of subjects who accepted the vaccine of those who think that age is an important factor to decide whether or not to get the COVID-19 vaccine (14.3%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine of those who think that health history is an important factor to decide whether or not to get the COVID-19 vaccine (28.9%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine according to the vaccines protection period (13.2%), was higher than those who didn't; the p < 0.05. The percentage of subjects who accepted the vaccine from those who think it's extremely important for them that getting the COVID-19 vaccine would protect their health (60.7%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine from those who think it's very important for them that getting the COVID-19 vaccine would protect their health (21.1%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine from those who think it's extremely important for them that getting the COVID-19 vaccine would protect the health of their relatives (72.8%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine from those who think it's very important for them that getting the COVID-19 vaccine would protect the health of their relatives (18.5%), was higher than those who didn't); the p < 0.05.

Table 8 shows the distribution of studied subjects by Acceptance of COVID-19 Vaccination and attitude and factors affecting it. The percentage of subjects who accepted the vaccine from those who think it's extremely important for them that getting the COVID-19 vaccine would protect the health of their community (71.3%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine from those who think it's very important for them that getting the COVID-19 vaccine would protect the health of their community (19.7%), was higher than those who didn't (p < 0.05).

The percentage of subjects who accepted the vaccine from those who think that people their age want to receive information about COVID-19 through the website (24.7%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine from those who think that people their age want to receive information about COVID-19 through a smartphone app (36.0%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine from those who think prevalence is important information about COVID-19 (46.9%), was higher than those who didn't the p < 0.05. The percentage of subjects who accepted the vaccine from those who think symptoms are important information about COVID-19 (75.3%), was higher than those who didn't; the p < 0.05. The percentage of subjects who accepted the vaccine from those who think transmission mode is important information about COVID-19 (68.3%), was higher than those who didn't the p < 0.05. The importance of avoidance information is not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). The percentage of subjects who accepted the vaccine from those who think how to get tested is important information about COVID-19 (39.0%), was higher than those who didn't the p < 0.05. The importance of treatment information is not significantly associated with acceptance of COVID-19 vaccination (p > 0.05). The percentage of subjects who accepted the vaccine from those who think that management is important information about COVID-19 (68.8%), was higher than those who didn't; the p < 0.05.

Table 1: Distribution of studied subjects according to acceptance of COVID-19 vaccination and sociodemographic characteristics.

		Acc	eptance Vacci	of COVIE nation	0-19	To	otal	χ²
Variable	Categories	1	lo	Y	es	ŝ.		(p-value)
		N	%	N	%	N	%	
Gender	Male	53	32.7	117	32.9	170	32.8	.001
	Female	109	67,3	239	67.1	348	67.2	(.973)
Nationality	Saudi	118	72.8	267	75.0	385	74.3	.272
	Non-Saudi	44	27.2	89	25.0	133	25.7	(.602)
Region of	Riyadh	26	16	22	6.2	48	9.3	25.738
residency	Makkah	101	62.3	270	75.8	371	71.6	(.001)
	Eastern	21	13.0	22	6.2	43	8.3	
	Madinah	12	7.4	26	7.3	38	7.3	
	Tabuk	0	0.0	6	1.7	6	1.2	
	Aseer	2	1.2	5	1.4	7	1.4	
	Najran	0	0.0	1	0.3	1	0.2	
	Albaha	0	0.0	4	1.1	4	0.8	
Educational Level	< High school	9	5.6	10	2.8	19	3.7	4.537
	High school	59	36.4	112	31.5	171	33.0	(.209)
	University	73	45.1	174	48.9	247	47.7	
_	>University	21	13.0	60	16.9	81	15.6	
Income/ month	<5,000	48	29.6	65	18.3	113	21.8	14.118
SR	5,000 -	73	45.1	147	41.3	220	42.5	(.001)
	> 15,000	41	25.3	144	40.4	185	35.7	
Chronic condition	Yes	34	21.0	93	26.1	127	24.5	1.587
	No	128	79.0	263	73.9	391	75.5	(.208)
Tested for	Yes	82	50.6	228	64.0	310	59.8	8.354
COVID-19	No	80	49.4	128	36.0	208	40.2	(.004)
Diagnosed with	Yes	31	19.1	64	18.0	95	18.3	.100
COVID-19 infection	No	131	80.9	292	82.0	423	81.7	(.752)
Relatives infected	Yes	136	84.0	327	91.9	463	89.4	7.328
	No	26	16.0	29	8.1	55	10.6	(.007)
Healthcare providers advice	Yes	125	77.2	343	96.3	468	90.3	47.004 (.000)
on the COVID-19 vaccine	No	37	22.8	13	3.7	50	9.7	
Knowledge level	None	2	1.2	3	0.8	5	1.0	3.194
about covid19	Alittle	13	8.0	31	8.7	44	8.5	(.363)
	Moderate	95	58.6	181	5.8	267	53.3	1000 1000
	Alot	52	32.1	141	39.6	193	37.3	

Table 2: Distribution of studied subjects by Acceptance of COVID-19 Vaccination and their knowledge about it.

			of COVID-19 ination	Total	χ²	
Variable	Categories	No	Yes	N %	(p-value)	
Covid-19 is dangerous in	Yes	N % 128 79.0	N % 314 88.2	442 85.3	9.437	
subjects65+years	No	128 79.0	16 4.5	34 6.6	(.009)	
subjects os · years	DN	16 9.9	26 7.3	42 8.1	(.005)	
Covid-19 is infectious	Yes	148 91.4	350 98.3	498 96.1	22.890	
covia 15 isiniccadas	No	10 6.2	0 0.0	10 1.9	(.000)	
	DN	4 2.5	6 1.7	10 1.9		
COVID-19 is caused by	Yes	35 21.6	42 11.8	77 14.9	8.504	
the Flu virus	No	93 57.4	233 65.4	326 62.9	(.014)	
	DN	34 1.0	81 22.8	115 22.2		
COV-19 always show S&S	Yes	31 19.1	33 9.3	64 12.4	10.637	
of being sick	No	122 75.3	307 86.2	429 82.8	(.005)	
	DN	9 5.6	16 4.6	25 4.8		
People who get COVID-19	Yes	82 50.6	140 39.3	222 42.9	5.823	
only have mild symptoms	No	66 40.7	180 50.6	246 47.5	(.054)	
	DN	14 8.6	36 10.1	50 9.7		
Fever can beS&S of	Yes	146 90.1	316 88.8	462 89.2	.213	
COVID-19	No	16 9.9	40 11.2	56 10.8	(.644)	
Cough can be a Sign of	Yes	127 78.4	279 78.4	406 78.4	.000	
COVID-19	No	35 21.6	77 21.6	112 21.6	(.995)	
SOB/sore throat can be	Yes	143 88.3	329 92.4	472 91.1	2.363	
signs of Covid19	No	19 11.7	27 7.6	46 8.9	(.124)	
A runny nose can be a	Yes	69 42.6	153 43.0	222 42.9	.007	
Sign of COVID-19	No	93 57.4	203 57.0	296 57.1	(.0935)	
Muscle pain can be a Sign	Yes	111 68.5	284 79.8	395 76.3	7.791	
of COVID-19	No	51 31.5	72 20.0	123 23.7	(.005)	
Headachescan be a Sign	Yes	140 86.4	307 86.2	447 68.3	.003	
of COVID-19	No	22 13.6	49 13.8	71 13.7	(.955)	
Fatigue can be a Sign of	Yes	68 42.0	175 49.2	243 46.9	2.306	
COVID-19	No	94 58.0	181 50.8	275 53.1	(.129)	
Diarrhoea can be a Sign	Yes	84 51.9	217 61.0	301 58.1	3.790	
of COVID-19	No	78 48.1	139 39.0	217 41.9	(.052)	
Loss of smell/taste is a	Yes	137 84.6	330 92.7	467 90.2	8.288	
Sign of Covid-19	No	25 15.4	26 7.3	51 9.8	(.004)	
Rashontheface can be	Yes	18 11.1	37 10.4	55 10.6	.606	
a Sign of COVID-19	No	144 88.9	319 89.6	463 89.4	(.806)	
Blurry vision can be a	Yes	10 6.2	28 7.9	38 7.3	.469	
Sign of COVID-19	No	152 93.8	328 92.1	480 92.7	(.493)	
EaracheisaSign of	Yes	14 8.6	42 11.8	56 10.8	1.150	
Covid-19	No	148 91.4	314 88.2	462 89.2	(.284)	
Hair loss can be a Sign of COVID-19	Yes	14 8.6	35 9.8	49 9.5	.184	
00410-13	No	148 91.4	321 90.2	469 90.5	(.668)	

Table 3: Distribution of studied subjects by Acceptance of COVID-19 Vaccination and knowledge about COVID-19 infection

		• • • • • • • • • • • • • • • • • • • •	of COVID-19 nation	Total	X²
Variable	categories	No N %	Yes N %	N %	(p-value)
COVID-19 after a	Can't get it again	127 78.4	311 87.4	438 84.6	
person has	Can get it again	18 11.1	19 5.3	37 7.1	7.620
recovered from it	l don't know	17 10.5	26 7.3	43 8.3	(.022)
The amount of	A little	14 8.6	23 6.5	37 7.1	1.339
information about	A moderate	59 36.4	121 34.0	180 34.7	(.512)
COVID-19	Alot	89 54.9	212 59.6	301 58.1	
Sourcesfrom which	Newspaper	0 0.0	1 0.3	1 0.2	1.066
l received	Magazines	1 0.6	2 0.6	3 0.6	(.957)
informationon	Radio	19 11.7	44 12.4	63 12.2	
COVID-19	Local news	17 10.5	31 8.7	48 9.3]
	Nationalnews	99 61.1	215 60.4	314 60.6	1
	Socialmedia	26 16.0	63 17.7	89 17.2	1
Sources you would	Magazines	1 0.6	3 0.8	4 0.8	26.331
trust the most for	Radio	2 1.2	5 1.4	7 1.4	(.000)
news and	Local news	16 9.9	67 18.8	83 16.0	
information about	Nationalnews	48 29.6	150 42.1	198 38.2	1
COVID-19	Socialmedia	42 25.9	58 16.3	100 19.3	1
	Internet	46 28.4	70 19.7	116 22.4	1
	Newspaper	7 4.3	3 0.8	10 1.9	1
The information on	the same	94 58.0	246 69.1	340 65.6	6.056
COVID-19 across	conflicting	2 V			(.014)
different sources		68 42.0	110 30.9	178 34.4	
Fake news about	None at all	12 7.4	6 1.7	18 3.5	12.289
the COVID-19	A little	54 33.3	129 36.2	183 35.3	(.006)
vaccine	A moderate	50 30.9	131 36.8	181 34.9	
	Alot	46 28.4	90 25.3	136 26.3	1
Information about Covid-19	Came from animals	43 26.5	150 42.1	193 37.3	30.980 (.000)
	Was made on purpose in a lab	101 62.3	131 36.8	232 44.8	
	Made accidentally in a Tab	12 7.4	61 17.1	73 14.1	
	Does not exist	6 3.7	14 3.9	20 3.9	
Tested by PCR for	Yes	79 48.8	218 61.2	297 57.3	7.078
COVID-19	No	83 51.2	138 38.8	221 42.7	(.008)
Places you went to	A drive-thru	52 32.1	139 39.0	191 36.9	3.713
gettestedfor COVID-19	A test was mailed to my home	9 5.6	27 7.6	36 6.9%	(.156)
	Other	101 62.3	190 53.4	291 56.2	1

Table 4: Distribution of studied subjects by Acceptance of COVID-19 Vaccination and knowledge aboutCOVID-19 infection

Variable	Categories	Vacci	of COVID-19 nation	Total	χ2
		No N %	Yes N %	N %	(p-value)
Have been told that you	Yes	23 14.2	46 12.9	69 13.3	.157
have COVID-19 by a doctor	No	139 85.8	310 87.1	449 86.7	(.692)
Thought you had COVID-19	Yes	60 37.0	90 25.3	150 29.0	7.480
due to symptoms only	No	102 63.0	266 74.7	368 71.0	(.006)
Relatives diagnosed with	Yes	106 65.4	248 69.7	354 68.3	.921
COVID-19	No	56 34.6	108 30.3	164 31.7	(.337)
COVID-19 is a threat to your	Notathreat	43 26.5	51 14.3	94 18.1	16.122
physical health	Minor	47 29.0	108 30.3	155 29.9	(.001)
	Moderate	37 22.8	130 36.5	167 32.2	
	Major	35 21.6	67 18.8	102 19.7	
COVID-19 is a threat to your	Notathreat	93 57.4	206 57.9	299 57.7	1.472
mental health	Minor	37 22.8	71 19.9	108 20.8	(.689)
	Moderate	23 14.2	50 14.0	73 14.1	813 240420
	Major	9 5.6	29 8.1	38 7.3	
COVID-19 is a threat to the	Notthreat	14 8.6	19 5.3	33 6.4	16.642
health of Saudi Arabia's	Minor	47 29.0	62 17.4	109 21.0	(.001)
population	Moderate	70 43.2	157 44.1	227 43.8	
	Major	31 19.1	118 33.1	149 28.8	
COVID-19 is a threat to your	Notathreat	45 27.8	106 29.8	151 29.2	2.213
financial safety	Minor	31 19.1	80 22.5	111 21.4	(.529)
	Moderate	45 27.8	99 27.8	144 27.8	
	Major	41 25.3	71 19.9	112 21.6	
COVID-19 is a threat to your	Notathreat	30 18.5	41 11.5	71 13.7	14.621
local community	Minor	52 32.1	79 22.2	131 25.3	(.002)
	Moderate	57 35.2	152 42.7	209 40.3	
	Major	23 14.2	84 23.6	107 20.7	

Table 5: Distribution of studied subjects by Acceptance of COVID-19 Vaccination and Practice

			of COVID-19 nation	Total	χz
Variable	Categories	No	Yes		(p-value)
		N %	N %	N %	
Fear of gettingCOVID-19	Yes	67 41.4	178 50.0	245 47.3	3.336
	No	95 58.6	178 50.0	273 52.7	(.068)
Worry about friends and	Yes	101 62.3	279 78.4	380 73.4	14.630
family due to COVID-19	No	61 37.7	77 21.6	138 26.6	(.000)
Experienced Bore dom	Yes	70 43.2	151 42.2	221 42.7	.029
due to COVID-19	No	92 56.8	205 57.6	297 57.3	(.865)
Experiencedfrustration	Yes	57 35.2	108 30.3	165 31.9	1.206
due to COVID-19	No	105 64.8	248 69.7	353 68.1	(.272)
Experienced anxiety due	Yes	61 37.7	150 42.1	211 40.7	.926
to COVID-19	No	101 62.3	206 57.9	307 59.3	(.336)
Experienced depression	Yes	58 35.8	123 34.6	181 34.9	.077
due to COVID-19	No	104 64.2	233 65.4	337 65.1	(.782)
Experienced sleeping	Yes	35 21.6	66 18.5	101 19.5	.667
trouble due to COVID-19	No	127 78.4	290 81.5	417 80.5	(.414)
Experienced increased	Yes	6 3.7	10 2.8	16 3.1	.298
sexual activity due to	No	156 96.3	346 97.2	502 96.9	(.585)
COVID-19 Experienced decreased	Yes	6 3.7	20 5.6	26 5.0	.856
sexual activity due to	No	156 96.3	336 94.4	492 95.0	(.355)
COVID 19		100 00.0	220 21.1		v <i>i</i>
ExperiencedIoneliness	Yes	41 52.3	118 33.1	159 30.7	3.215
due to COVID-19	No	121 74.7	238 66.9	359 69.3	(.073)
Experienced confusion	Yes	33 20.4	76 21.3	109 21.0	.064
due to COVID-19	No	129 79.6	280 78.7	409 79.0	(.800)

		Acc	eptance (Vaccir		To	otal	X2	
Variable	Categories	No N %		Yes N %		N	%	(p-value)
The chance that	No chance	23	14.2	33	9.3	56	10.8	
you will get	A little	94	58.0	198	55.6	292	56.4	4.962
COVID-19 in the	Moderate	32	19.8	96	27.0	128	24.7	(.175)
future	High	13	8.0	29	8.1	42	8.1	
ltwouldbe	Notatall	30	18.5	40	11.2	70	13.5	9.267
serious if you got	A little	71	43.8	136	38.2	207	40.0	(.026)
COVID-19	Moderately	44	27.2	132	37.1	176	34.0	1
	Very	17	10.5	48	13.5	65	12.5	1
Weneedour	Strongly agree	56	34.6	117	32.9	173	33.4	6.996
normal routines	Agree	38	23.5	56	15.7	94	18.1	(.136)
insteadof	Notsure	20	12.3	67	18.8	87	16.8	
worrying about	Disagree	35	21.6	81	22.8	116	22.4	1
protective behaviours	Strongly disagree	13	8.0	35	9.8	48	9.3	
lt's a crime if	Strongly agree	83	51.2	281	78.9	364	70.3	50.862
people know they	Agree	40	24.7	51	14.3	91	17.6	(.000)
have COVID-19	Notsure	18	11.1	17	4.8	35	6.8	
and don't do	Disagree	12	7.4	3	0.8	15	2.9	1
protective behaviours.	Strongly disagree	9	5.6	4	1.1	13	2.5	
Peoplewhotest	Strongly agree	91	56.2	300	84.3	391	75.5	58.988
positivefor	Agree	48	29.6	50	14.0	98	18.9	(.000)
COVID-19 should	Notsure	11	6.8	5	1.4	16	3.1	
beisolated	Disagree	10	6.2	1	0.3	11	2.1	
	Strongly disagree	2	1.2	0	0.0	2	0.4	
You're willing to	Definitely	0	0.0	356	100.0	356	68.7	518.000
get the COVID-19	Probably	44	27.2	0	0.0	44	8.5	(.000)
vaccine if it was	Notsure	40	24.7	0	0.0	40	7.7	
free	Probably not	29	17.9	0	0.0	29	5.6	
	Not	49	30.2	0	0.0	49	9.5	
Doctors would	YES	120	74.1	347	97.5	467	90.2	68.669
recommend taking the COVID- 19 vaccine	NO	42	25.9	9	2.5	51	9.8	(.000)
If I decided to get	Stronglyagree	16	9.9	33	9.3	49	9.5	15.175
the COVID-19	Agree	27	16.7	37	10.4	64	12.4	(.004)
vaccine, it would	Notsure	53	32.7	81	22.8	134	25.9	
be hard to find a	Disagree	32	19.8	117	32.9	149	28.8	
provider or clinic	Strongly disagree	34	21.0	88	24.7	122	23.6	

Table 6: Distribution of studied subjects by Acceptance of COVID-19 Vaccination and attitude

Variable	Categories	Acc	eptance Vacci	of COV nation	ID-19	Total		χ² (p-value)
			No	Y	es			
		N	%	N	%	N	%	
The COVID-19	Strongly agree	76	46.9	199	55.9	275	53.1	37.890
vaccine might have	Agree	50	30.9	138	38.8	188	36.3	(.000)
side effects, like	Notsure	26	16.0	18	5.1	44	8.5	
fever or soreness in	Disagree	6	3.7	1	0.3	7	1.4	
the arm.	Strongly disagree	4	2.5	0	0.0	4	0.8	
Your opinion on the	Notatall	60	37.0	12	3.4	72	13.9	159.437
effectiveness of the	A little	42	25.9	35	9.8	77	14.9	(.000)
COVID-19 vaccine	A Moderate	53	32.7	210	59.0	263	50.8	
	High	6	3.7	99	27.8	105	20.3	
	Other	1	0.6	0	0.0	1	0.2	
Factors would	My age	9	5.6	51	14.3	60	11.6	28.245
matter to you in	My ethnicity	1	0.6	1	0.3	2	0.4	(.002)
deciding whether or	My health state	38	23.5	103	28.9	141	27.2	
not to get the COVID-19 vaccine	If I had recently travelled	15	9.3	14	3.9	29	5.6	
	Coverage by health insurance	1	0.6	4	1.1	5	1.0	
	lf a doctor recommendsit	6	3.7	15	4.2	21	4.1	
	Effect of vaccine	31	19.1	52	14.6	83	16.0	1
	Period of vaccine protection	15	9.3	47	13.2	62	12.0	
	Side effects of the vaccine	24	14.8	22	6.2	46	8.9	
	The opinions of relatives	4	2.5	14	3.9	18	3.5	
	Magnitude of COVID-19	18	11.1	33	9.3	51	9.8	
COVID-19 vaccine	Extremely	5	3.1	216	60.7	221	42.7	276.026
protects your health	Very	17	10.5	75	21.1	92	17.8	(.000)
	Fairly	38	23.5	50	14.0	88	17.0	
	Slightly	23	14.2	10	2.8	33	6.4	
	Notatall	79	48.8	5	1.4	84	16.2	
COVID-19 vaccine	Extremely	25	15.4	259	72.8	284	54.8	235.476
would protect the	Very	21	13.0	66	18.5	87	16.8	(.000)
health of your	Fairly	42	25.9	23	6.5	65	12.5	1000 0000
relatives	Slightly	24	14.8	4	1.1	28	5.4	
	Notatall	50	30.9	4	1.1	54	10.4	

Table 7: Distribution of studied subjects by Acceptance of COVID-19 Vaccination and attitude

Table 8: Distribution of studied subjects by Acceptance of COVID-19 Vaccination and attitude

Variable	Categories		ceptance Vacci	nation		Total		X² (p-value)
		No N %		Yes N	%			
The importance that	Extremely	20	12.3	254	71.3	274	52.9	246.164
gettingthe COVID-19	Very	25	15.4	70	19.7	94	18.3	(.000)
vaccine would protect	Fairly	52	32.1	25	7.0	77	14.9	1
the health of your	Slightly	9	5.6	6	1.7	15	2.9	1
community	Notatall	56	34.6	1	0.3	57	11.0	1
	Website	36	22.2	88	24.7	124	23.9	24.629
People your age want to	Smartphoneapp	37	22.8	128	36.0	165	31.9	(.003)
receiveinformation	Email	5	3.1	6	1.7	11	2.1	()
about COVID-19 through	Textmessages	23	14.2	54	15.2	77	14.9	1
	Telephone call with a health educator	13	8.0	24	6.7	37	7.1	
	DVD sent through the mail	1	0.6	0	0.0	1	0.2	
	Brochure sent through the mail	1	0.6	5	1.4	6	1.2	
	In-person with a health educator	16	9.9	22	6.2	38	7.3	
	Video chat with a health educator	10	6.2	14	3.9	24	4.6	
	OTHER	20	12.3	15	4.2	35	6.8	1
Prevalence is important information about	YES	49	30.2	167	46.9	216	41.7	12.716 (.000)
COVID-19	NO	113	69.8	189	53.1	302	58.3	
Symptoms are important	YES	103	63.6	268	75.3	371	71.6	7.499
information about COVID-19	NO	59	36.4	88	24.7	147	28.4	(.006)
The transmission mode is	YES	81	50.0	243	68.3	324	62.5	15.844
important information about COVID-19	NO	81	50.0	113	31.7	194	37.5	(.000)
Avoidance is important	YES	88	54.3	220	61.8	308	59.5	2.582
information about COVID-19	NO	74	45.7	136	38.2	210	40.5	(.108)
How to get tested is important information	YES	41	25.3	139	39.0	180	34.7	9.265 (.002)
about COVID-19	NO	121	74.7	217	61.0	338	65.3	1
Treatment is important	YES	84	51.9	196	55.1	280	54.1	.460
information about COVID-19	NO	78	48.1	160	44.9	238	45.9	(.497)
Management is	YES	87	53.7	245	68.8	332	64.1	11.055
important information about COVID-19	NO	75	46.3	111	31.2	186	35.9	(.001)

Discussion

The present study aimed to assess the acceptance of a COVID-19 vaccine and its related determinants among the general adult population in Jeddah, Saudi Arabia. Previous studies found that older females display hesitation toward COVID-19 vaccination (19), while the male gender was an important determinant for acceptance of COVID-19 vaccination. This result could be due to the reportedly high rates of COVID-19-related morbidity and mortality among male infected patients (17). Furthermore, women tend to support conspiracy theories in a higher proportion than men, which may be one of the factors that can explain women's higher resistance to vaccination (19). However, in the present study gender and nationality were not significantly associated with acceptance of COVID-19 vaccination.

Vaccination is considered one of the most outstanding public health inventions in the 21st century. However, its acceptance is varied with space, time, social class, ethnicity, and contextual human behavior (26). In the present study, subjects residing in the Makkah region had the highest acceptance rate compared to other areas. Previous studies revealed that college and/or graduate degree holders (75%) compared to people with less than a college degree were more likely to accept the vaccine (27). In the present study, educational level was not significantly associated with acceptance of COVID-19 vaccination. In the present study subjects with high monthly income were more likely to accept the vaccine against COVID-19 infection. This is in line with previous studies (28-30). In the present study, the presence of self-reported health status (having chronic medication) was associated with higher acceptance of the COVID-19 vaccine. This is in line with a previous study (31). In the present study, participants who had tested negative for COVID-19 were more willing to take the COVID-19 vaccine. This is consistent with a previous study (32). On the other hand, in the present study, getting COVID-19 infection was not significantly associated with acceptance of COVID-19 vaccination, while those with relatives infected with COVID-19 were more willing to get the vaccine. In the present study, participants' trust in the health system and perceived risk of acquiring infection were found to be significantly associated with the acceptance of the COVID-19 vaccine. This is in line with a previous study (14). Higher knowledge about COVID-19 was not significantly associated with acceptance of COVID-19 vaccination. This is not in line with a previous study (32). Older age on admission to hospital with COVID-19 infection was associated with increased death (33). In the present study, those who accepted the vaccine realized that. COVID-19 spreads primarily through contact with an infected person when they cough or sneeze. It also spreads when a person touches a surface or object that has the virus on it, then touches their eyes, nose or mouth, and it is more harmful than flu (34, 35). In the present study, acceptance of the vaccine was associated with increased knowledge about clinical aspects of the COVID-19 infection. This was in line with a previous study (32). Participants who were concerned about acquiring infection with the COVID-19 virus were more likely to accept the COVID-19 vaccine compared with those who were not concerned with the infection (14). This was not in line with findings from the present study. Acceptance of the vaccine was associated with the perception that COVID-19 infection was a threat to the community. This was in line with a previous study (36). The chance of getting COVID-19 in the future was not significantly associated with acceptance of COVID-19 vaccination. This was in line with a report from a previous study (37). Acceptance of the vaccine was associated with the perception of the severity and harmful effects of getting infected with COVID-19. This was in line with a previous study (7). Acceptance of the vaccine was associated with the conception that it was a crime if one got infected and did not isolate from the public. This was in line with a previous study (38).

A previous study revealed that the majority of the participants were willing to have the COVID-19 vaccine if it was provided free by the government (16). This was similar to findings from the present study. One of the strongest correlates of vaccine acceptability was whether participants thought their healthcare provider would recommend they get vaccinated against COVID-19. Provider recommendations are a key determinant of vaccination behaviors (20). This was similar to findings from the present study. Acceptance of the vaccine was associated with the perception that the vaccine has moderate or high effectiveness. This was in line with previous studies (21, 22). Acceptance of the vaccine was associated with the perception that the vaccine is important for the elderly, and the health history and the health of their relatives and friends. These were in line with previous studies (3, 7). Acceptance of the vaccine was significantly associated with getting source information from official and government websites, mainstream news media, and social media. This was consistent with a previous study (39). Because early clinical presentations of infected patients are non-specific, testing is needed to confirm the diagnosis of COVID-19 (40). This was similar to findings from the present study, particularly among those who accepted the vaccine.

Limitations

There are some limitations to this study: as this study is cross-sectional, the causal relationship remains unknown, and we do not know if the effects of these variables on acceptance of the COVID-19 vaccine during the COVID-19 pandemic will persist in the long term. It is also a nonprobability convenient sample, and its generalization to the population may be defective; however, it is an exploratory study.

Acknowledgements

We thank all the participants for their cooperation throughout the study.

Conclusion

About one-third of the population does not accept the vaccine, particularly, those with low income. Increasing the knowledge of the people about the clinical aspects, and health impact of the virus of COVID-19 on the population and the community are important interventions to increase the acceptance rate of the population.

References

1- Almaghaslah D, Alsayari A. The effects of the 2019 novel coronavirus disease (COVID-19) outbreak on academic staff members: a case study of a pharmacy school in Saudi Arabia. Risk management and healthcare policy. 2020;13:795.

2- Schwarzinger M, Watson V, Arvidson P, Alla F, Luchini S. COVID-19 vaccine hesitancy in a representative working-age population in France: a survey experiment based on vaccine characteristics. The Lancet Public Health. 2021;6(4):e210-e21.

3-Hammoud MM, Standiford T, Carmody JB. Potential implications of COVID-19 for the 2020-2021 residency application cycle. JAMA. 2020;324(1):29-30.

4-COVID W. Weekly Operational Update. 2020. Accessed 30/11/20 from https://www. who. int/docs/default-source

5-Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, et al. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. Journal of medical virology. 2020;92(6):618-31.

6-Del Rio C, Collins LF, Malani P. Long-term health consequences of COVID-19. JAMA. 2020;324(17):1723-4. 7-Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel medicine and infectious disease. 2020;34:101623.

8-Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet infectious diseases. 2020;20(6):669-77.

9-Reiter PL, Pennell ML, Katz ML. Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine. 2020;38(42):6500-7.

10-Saudi Press Agency. Saudi Food and Drug Authority (SFDA) Approves Registration of Pfizer-BioNTech COVID-19 Vaccine. Saudi Press Agency; December 10 A few. 2021

11- Assiri A, Al-Tawfiq JA, Alkhalifa M, Al Duhailan H, Al Qahtani S, Dawes RA, et al. Launching COVID-19 vaccination in Saudi Arabia: lessons learned, and the way forward. Travel Medicine and Infectious Disease. 2021:102119.

12-Seton M, Raude J. Factors in vaccination intention against the pandemic influenza A/H1N1. European journal of public health. 2010;20(5):490-4.

13- Magadmi RM, Kamel FO. Beliefs and barriers associated with COVID-19 vaccination among the general population in Saudi Arabia. 2020.

14- Al-Mohaithef M, Padhi BK. Determinants of COVID-19 vaccine acceptance in Saudi Arabia: a web-based national survey. Journal of multidisciplinary healthcare. 2020;13:1657.

15- Barry M, Temsah M-H, Alhuzaimi A, Alamo N, Al-Eyadhy A, Aljamaan F, et al. COVID-19 vaccine confidence and hesitancy among healthcare workers: a cross-sectional survey from a MERS-CoV experienced nation. Medrxiv. 2020.

16- Qattan A, Alshareef N, Alsharqi O, Al Rahahleh N, Chirwa GC, Al-Hanawi MK. Acceptability of a COVID-19 vaccine among healthcare workers in the Kingdom of Saudi Arabia. Frontiers in Medicine. 2021;8:83.

17- Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507-13.

18- Allington D, Duffy B, Wessely S, Dhavan N, Rubin J. Health-protective behaviour, social media usage and conspiracy belief during the COVID-19 public health emergency. Psychological medicine. 2020:1-7.

19- Magadmi RM, Kamel FO. Beliefs and barriers associated with COVID-19 vaccination among the general population in Saudi Arabia. BMC Public Health. 2021;21(1):1-8.

20- Rodriguez SA, Mullen PD, Lopez DM, Savas LS, Fernández ME. Factors associated with adolescent HPV vaccination in the US: A systematic review of reviews and multilevel framework to inform intervention development. Preventive medicine. 2020;131:105968.

21- Rajamoorthy Y, Radam A, Taib NM, Rahim KA, Munusamy S, Wagner AL, et al. Willingness to pay for hepatitis B vaccination in Selangor, Malaysia: a cross-sectional household survey. PLoS One. 2019;14(4): e0215125.

22- Rajamoorthy Y, Radam A, Taib NM, Rahim KA, Wagner AL, Mudatsir M, et al. The relationship between perceptions and self-paid hepatitis B vaccination: a structural equation modelling approach. PloS one. 2018;13(12):e0208402.

23- Sundaram N, Purohit V, Schaetti C, Kudale A, Joseph S, Weiss MG. Community awareness, use and preference for pandemic influenza vaccines in Pune, India. Human vaccines & immunotherapeutics. 2015;11(10):2376-88.

24- Palamenghi L, Barello S, Boccia S, Graffigna G. Mistrust in biomedical research and vaccine hesitancy: the forefront challenge in the battle against COVID-19 in Italy. European journal of epidemiology. 2020;35(8):785-8

25- Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioural, and biomedical sciences. Behaviour Research Methods. 2007; 39 (2): 175-191.

26- Xiao X, Wong RM. Vaccine hesitancy and perceived behavioural control: a meta-analysis. Vaccine. 2020;38(33):5131-8.

27- Malik, A. A., McFadden, S. M., Elharake, J., & Omer, S. B. (2020). Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine, 26, 100495

28- Wellcome. Wellcome Global Monitor 2018. Available online: HTTPS:// Wellcome.ac.UK/reports/Wellcome-global-monitor/2018 (accessed on 27 March 2021).

29- Bhopal, S.; Nielsen, M. Vaccine hesitancy in low- and middle-income countries: Potential implications for the COVID-19 response. Arch. Dis. Child. 2021, 106, 11 3 – 11 4 . [Google Scholar] [CrossRef]

30- World Bank Blogs. New Country Classifications by Income Level: 2019–2020. 1 July 2019. Available online: https://blogs.worldbank.org/opendata/new-countryclassifications-income-level-2019-2020 (accessed on 24 March 2021).

31- Wong, Martin CS, et al. "Acceptance of the COVID-19 vaccine based on the health belief model: A populationbased survey in Hong Kong." Vaccine 39.7 (2021): 1148-1156

32- Bono, Suzanna Awang, et al. "Factors affecting COVID-19 vaccine acceptance:

An international survey among Low-and Middle-Income Countries." Vaccines 9.5 (2021): 515.

33- Sun, Haiying, et al. "Risk factors for mortality in 244 older adults with COVID19

in Wuhan, China: a retrospective study." Journal of the American Geriatrics

Society 68.6 (2020): E19-E23

34- Bakar, Nashirah Abu, and Sofian Rossi. "Effect of Coronavirus disease (COVID-19) on the tourism industry." International Journal of Advanced Engineering Research and Science 7.4 (2020): 189-193

35- Piroth, Lionel, et al. "Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study." The Lancet Respiratory Medicine 9.3 (2021):251-259.

36- Mannan DKA, Farhana KM. Knowledge, attitude and acceptance of a COVID-19 vaccine: A global crosssectional study. International Research Journal of Business and Social Science. 2020;6(4).

37- Lin Y, Hu Z, Zhao Q, Alias H, Danaee M, Wong LP. Understanding COVID-19 vaccine demand and hesitancy: A nationwide online survey in China. PLoS neglected tropical diseases. 2020;14(12):e0008961.

38- Yu X, Yang R. COVID-19 transmission through asymptomatic carriers is a challenge to containment. Influenza and other respiratory viruses. 2020;14(4):474.

39- Charron J, Gautier A, Jestin C. Influence of information sources on vaccine hesitancy and practices. Medecine et maladies infectieuses. 2020;50(8):727-33.

40- Peeling, Rosanna W., et al. "Serology testing in the COVID-19 pandemic response." The Lancet Infectious Diseases (2020).