
MIDDLE EAST JOURNAL OF FAMILY MEDICINE  •  VOLUME 7 , ISSUE 10 29
WORLD FAMILY MEDICINE/MIDDLE EAST JOURNAL OF FAMILY MEDICINE VOLUME 16 ISSUE 9, SEPTEMBER 2018

POPULATION AND COMMUNIT Y STUDIES

Neural Processing of Food Stimuli in Self-Regulation Brain 
Regions using Bayesian General Linear Modeling Approach  

Parisa Naseri (1) 
Hamid Alavi Majd (1) 
Seyed Morteza Najibi (2) 
Seyed Mohammad Tabatabaee (3) 
Elham Faghihzadeh (1)

(1) Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of 
Medical Sciences, Tehran, Iran.
(2) Department of Statistics, College of Sciences, Shiraz University, Shiraz, Iran.
(3) Department of Medical Informatics, Faculty of Paramedical Sciences, Shahid Beheshti University of 
Medical Sciences, Tehran, Iran.

Corresponding author:  
Hamid Alavi Majd
Department of Biostatistics, School of Paramedical Sciences,  
Shahid Beheshti University of Medical Sciences,  
Tehran, Iran. 
Email: alavimajd@gmail.com

Received: July 2018; Accepted: August 2018; Published: September 1, 2018
Citation: Parisa Naseri, Hamid Alavi Majd, Seyed Morteza Najibi, Seyed Mohammad Tabatabaee, Elham Faghihzadeh. 
Neural Processing of Food Stimuli in Self-Regulation Brain Regions using Bayesian General Linear Modeling Approach. 
World Family Medicine. 2018; 16(9): 29-35.  DOI: 10.5742MEWFM.2018.93494

Abstract
Background: One of the social concepts is self-regu-
lation; the ability to regulate and control our thoughts, 
emotions and behaviors. With developments in  
neuroscience, the neural understanding of self- 
regulation has been increased. Weight management 
is a typical kind of self-regulation which leads to be-
havioral changes. Also in recent years, investigators 
have used functional Magnetic Resonance Imaging 
(fMRI) technique for assessing effects of different 
stimuli such as food on brain responses. The aim 
of the current study is to localize self-regulation ar-
eas in response to palatable food using a Bayesian 
Generalized Linear Model (GLM) approach.

Methods: A new proposed Bayesian approach was 
applied for assessing functional response to palat-
able food stimuli in a block design of fMRI data with 
370 scans of one healthy woman. Regions of Inter-
est (ROIs) including the dorsolateral and medial 
prefrontal cortex, the inferior frontal gyrus and the 
mid-ventrolateral frontal cortex were investigated. 
In this Bayesian approach, Stochastic Partial Dif-
ferential Equation (SPDE) prior was considered for 
spatial dependency and AR(1) process was used 
for temporal correlation via pre-weighting residuals.  

 
 
 
 
Finally, inferences were conducted using fast  
Integrated Nested Laplace Approximation (INLA) 
approximation.

Results: The results of the present study revealed 
that palatable food as compared to non-food images 
elicit stronger activation in brain self-regulation ar-
eas including the dorsolateral and medial prefrontal 
cortex, the inferior frontal gyrus and the mid-ventro-
lateral frontal cortex.

Conclusion: Self-regulation areas of brain of people 
who are concerned about their weight, will be acti-
vated in confrontation with palatable foods.
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Introduction

In the past two decades, functional Magnetic Resonance 
Imaging (fMRI) has become a valuable technology 
which has been widely used to study the human brain’s 
mechanism in response to experimental stimuli for eliciting 
visual, auditory or advanced cognitive activities using 
detection of changes in the flow rate and blood oxygen 
saturation level(1). 

One of the social cognitive concepts is self-regulation; 
the ability to regulate and control our thoughts, emotions 
and behaviors. Eating is typical kind of self-regulation and 
involves one’s ability to change dietary behaviors to lose 
or gain weight and become healthier(2).

Recent developments in neuroscience have increased the 
neural understanding of self-regulation(3). Because of the 
availability of poor quality and calorie-dense fast food, the 
prevalence of overweight and obesity has raised research 
on food and dietary habits are becoming important 
issues. Many people are concerned about their weight so 
limit their food intake in order to avoid weight gain. The 
conflict between the appeal of palatable foods and weight 
management leads to self-regulation. 

If an individual can self-regulate his or her eating behavior 
successfully, then change can take place, which can 
lead to obtaining the intended goal. The defensive self-
regulation system of people who are conscious about 
their weight automatically becomes active in confrontation 
with palatable foods so leads to maintenance of weight 
management goals (4).

Also in recent years, investigators have used fMRI 
techniques for assessing effects of different stimuli such 
as food on brain responses(5). However, fMRI data 
have special characteristics: spatial correlation between 
thousands of variables named voxels and temporal 
correlations at hundreds of time points at each voxel leads 
to massive amounts of highly complex data so in addition 
to statistical modeling of fMRI data that considers both 
spatial and temporal structures, the computational cost 
dealing with analysis of such high dimensional data will be 
challenging.  Because of disability of classical Generalized 
Linear Model (GLM) in considering fMRI data properties, 
some alternatives such as Bayesian approaches have 
been proposed(6, 7). 

In a Bayesian GLM, specific prior distributions are assumed 
for the task activation and other unknown parameters in 
the model, considering them with the likelihood, compose 
a Bayesian hierarchical model.

Owing to a large amount of data, standard Markov Chain 
Monte Carlo (MCMC) methods are typically too time-
consuming so a recently developed Bayesian inference 
tool based on integrated nested Laplace approximation 
(INLA) has been employed(8). INLA method can compute 
approximations to the posterior distributions and manage 
large data sets in a shorter time by using the sparsity of 

Gaussian Markov Random Fields (GMRFs). Also INLA is 
much faster than MCMC (9) and can be easily implemented 
using R-INLA package(10). 

The present study uses fMRI data to identify self-
regulation areas reactive to palatable food stimuli. A new 
proposed Bayesian GLM approach is applied for statistical 
analysis.

Predetermined self-regulation areas in recent studies 
include some regions in the prefrontal cortex (PFC) so 
response to food images will be assessed in these parts 
of the human brain (11-13).

Materials and Methods

1. Subjects
In a block experiment, thirty healthy, normal weight, right 
handed women with mean age of 22.1 years performed 
a passive viewing task with blocks of food and non-food 
images. For our aim in this research the first subject was 
selected. The fMRI data used in this study was downloaded 
from the OpenfMRI database. Its accession number is 
ds000157 (4).

2. Stimuli
During scanning, subjects alternatively viewed 16 blocks 
of food and non-food images (i.e., office utensils), with 8-
16 seconds rest blocks. Halfway the task, there was 10 
seconds break. 8 images were presented for 2.5 seconds 
each with 0.5 seconds inter-stimulus interval in the 
image blocks. All pictures were food objects on a white 
background.

3. Functional Magnetic Resonance Imaging
The functional scan was a T2 weighted gradient echo 
2D-echo planar imaging sequence (64×64, repetition 
time=1600 ms, echo time=23 ms, flip angle=72.5, 
FOV=208×119×256 mm, SENSE factor AP=2.4, 30 axial 
3.6 mm slices with 0.4 mm gap, reconstructed voxel 
size=4×4×4 mm).

In one functional run 370 scans were obtained which lasted 
10 minutes. In addition to functional data, a high resolution 
T1-weighted anatomical MRI scan was made (3D gradient 
echo sequence, repetition time=8.4 ms, echo time=3.8 
ms, flip angle=8, FOV=288×288×175, 175 sagittal slices, 
voxel size=1×1×1mm).

4. Data processing and statistical analysis
The data was pre-processed with regard to pipeline 
in Smeet et al and using SPM12 software package  
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/),  
which includes removal of spatial distortions, motion 
realignment, distortion correction, alignment to the 
structural image, bias field correction and intensity 
normalization(14); also Gaussian filter with 8 mm FWHM 
was used to smooth the images, high pass filtering was 
done with cutoff 128 s. These are standard steps in fMRI 
data preprocessing and are necessary to align the data 
into a common space and remove main sources of noise. 
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Design matrix was generated by fitting a boxcar function to 
each time series convolved with canonical hemodynamic 
response function.

5. Statistical analysis
New proposed method by Mejia in 2017 was applied to 
perform statistical inferences(10).

Consider the following GLM:

Here y is a TN ×1 vector containing the fMRI time series 
of all voxels, and the Xk  and Zj  are TN ×N design matrices 
for the activation amplitudes βk (including baseline β0) and 
nuisance signals bj, respectively. The matrix V is a T×T 
covariance matrix for an AR(p) process, where p is the 
degree of autoregressive.

To account for spatial correlation, spatial prior on each βk 
for k = 0, … , K was considered, where K is number of tasks 
under investigation. One of the popular spatial structures 
is the class of Matérn Gaussian fields that have flexible 
covariance function between locations. We say b(u) is a 
Matérn Gaussian process if the covariance between u and v 

is given by 

Where Kv(.)  is the modified Bessel function of the second 
kind with order

 ,   is the gamma function,

K > 0 is the spatial scale, and   is the variance. 

However, covariance matrix of Matérn spatial process is 
dense so its inverse is difficult and is not computationally 
possible for big data sets. This problem has been addressed 
by solving the stochastic partial differential equation 
(SPDE) and obtaining an explicit GMRF representation for 
Matérn Gaussian fields (15). 

Here, the steps of INLA-SPDE are briefly described as 
follows.

1) The non-convex hull meshes using coordinates of 
voxels was constructed. The spatial correlation structure 
for the SPDE part of the model was defined by the meshes. 
Herein, the Constrained Refined Delaunay Triangulation 
was made with the “inla. mesh.2d” function.

2) A projection matrix was calculated. Because the SPDE 
model was defined on the mesh, the process at the 
mesh vertices is required to be projected to the locations 
response. Details about the calculation of the projector 
matrix can be found in Lindgren et al. (16).

3) The SPDE model based on the constructed meshes in 
step 1 was defined. Here the Matérn correlation function 
was applied which was available in R-INLA.

4) A hierarchical model was specified using equation (1) 
according to Krainski et al (17). The hierarchical model 
implemented in INLA-SPDE includes three components 
(i.e. intercept, the fixed effect, and random effect). In this 
study, each stimulus was considered as random effects. 
Then the Normal family was considered for probability 
distribution of the response.

5) Finally, the posterior distribution of the parameters was 
estimated.

For more details about SPDE and INLA method refer to 
Blangiardo et al (18). 

To consider temporal correlation of time series and to 
reduce the computational cost of fitting the Bayesian 
model, the fMRI time courses were first pre-whitened 
by assuming an AR (1) process on the residuals from a 
classical GLM with uncorrelated errors.

Pre-whitened steps are done as below.
(1) The p AR coefficients for each location in the brain 
were estimated.

(2) The pre-whitening matrix W for each location in the 
brain was computed resulting in N T×T matrices, where N 
is the number of voxels in the brain.

(3) Finally, the regression model Wy = WXβ + Wε was fit 
at each voxel to get estimates and standard errors for β for 
each subject and voxel.

To account for noise due to subject motion, six rigid body 
realignment parameters that were estimated in the motion 
realignment stage of preprocessing were included in 
the model as nuisance covariates. Furthermore, linear 
and quadratic time terms were included for considering 
scanner drift.

In this study, a Regions of Interest (ROIs) analysis was 
conducted focusing on the dorsolateral and medial 
prefrontal cortex, the inferior frontal gyrus and the mid-
ventrolateral frontal cortex.

The mask of the selected regions was made using the 
WFU PickAtlas toolbox in MATLAB R2016b software(19).
All brain images were mapped to Type 2 Eve Atlas of 
the SPM12 (20). Data are prepared by programming 
in MATLAB R2016b software and then model fitting is 
performed using R-INLA package (http://www.r-inla.org).
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Results

In brain anatomy, PFC is the cerebral cortex which covers the front part of the frontal lobe. Subdivision parts of the 
prefrontal cortex based on Brodmann areas are mentioned in Table 1. From these regions, the dorsolateral and medial 
prefrontal cortex (BA9), the inferior frontal gyrus (BA45) and the mid-ventrolateral frontal cortex (BA47) were chosen for 
analysis.  These regions are shown in Figure 1.

 
Table 1: subdivision parts of the prefrontal cortex based on Brodmann areas

                                                 
Figure 1: ROIs in present study based on Brodmann area atlas 

Activation of mentioned areas in response to palatable food versus non-food stimuli was examined using Bayesian GLM 
model. The results of fitted model are illustrated as figures.

          
Figure 2: a) Brain regions with stronger activation in response to palatable food vs non-food images. 
b) The mask of dorsolateral and medial prefrontal cortex
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Figure 2a displays the posterior mean of palatable food versus non-food images for the dorsolateral and medial 
prefrontal cortex in three different views: Sagittal, Coronal and Axial. The dorsolateral and medial prefrontal cortex 
were stronger activated during viewing of palatable food images.

The white and yellow colors indicate the stronger activation and the orange and red colors represent a weaker and 
zero activation, respectively. Figure 2b is the mask of the dorsolateral and medial prefrontal cortex and the voxels of 
this region are displayed in blue. 

          
Figure 3: a) Brain regions with stronger activation in response to palatable food vs non-food images 
b) The mask of inferior frontal gyrus 

Figure 3a displays the posterior mean of palatable food versus non-food images for the inferior frontal gyrus in three 
different views: Sagittal, Coronal and Axial. The inferior frontal gyrus was stronger activated during viewing of palatable 
food images.

The white and yellow colors indicate the stronger activation and the orange and red colors represent a weaker and 
zero activation, respectively. Figure 3b is the mask of the inferior frontal gyrus and the voxels of this region are 
displayed in blue.

         
Figure 4: a) Brain regions with stronger activation in response to palatable food vs non-food images 
b) The mask of mid ventrolateral frontal cortex
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Figure 4a displays the posterior mean of palatable food 
versus non-food images for the mid-ventrolateral frontal 
cortex in three different views: Sagittal, Coronal and 
Axial. The mid-ventrolateral frontal cortex elicited stronger 
activation during viewing of palatable food images.

The white and yellow colors indicate the stronger activation 
and the orange and red colors represent a weaker and zero 
activation, respectively. Figure 4b is the mask of the mid-
ventrolateral frontal cortex and the voxels of this region are 
displayed in blue. 

Discussion

One of the important aspects of human behavior is self-
regulation which has been studied through the social 
aspect and personality psychology as well as cognitive 
psychology(21). Recent progressions in neuroscience 
have led to understanding the neural foundations of self-
regulation. Weight management is a typical kind of self-
regulation which leads to behavioral changes. Based on 
prior studies, prefrontal cortex is one of the most effective 
regions in the self-regulation cognitive function.

In the present research, INLA-SPDE approach was 
applied for assessing functional response to palatable food 
images in a block design fMRI data. The areas including 
the dorsolateral and medial prefrontal cortex, the inferior 
frontal gyrus and the mid-ventrolateral frontal cortex were 
considered. Using the described Bayesian approach, the 
mentioned regions in the frontal cortex elicited stronger 
activation during palatable food versus non-food images 
and our results were similar to previous studies. The results 
showed that self-regulation areas will be activated in people 
who are concerned about their weight. The results showed 
the self-regulation areas of people who are concerned 
about their weight will be activated in confrontation with 
palatable foods.

The results of previous studies showed that various 
cortical regions have been involved in self-regulation of 
which the prefrontal cortex is most notable for cognitive 
processes that are implicated in self-regulation(22-24). 
The three main areas of PFC particularly important to self-
regulatory functioning are ventromedial PFC (vMPFC) 
including orbitofrontal cortex, lateral PFC, and the anterior 
cingulate cortex (ACC)(3, 25). Smeets et al addressed 
brain activation of self-regulation in response to food 
cues using fMRI technique. They concluded the activation 
of self-regulation areas in response to food cues will be 
adjusted by the importance of weight management goal. 
They used ROIs: the lateral prefrontal cortex, inferior frontal 
gyrus and the anterior cingulate cortex and observed 
activation in these areas(4). Charbonnier et al examined 
brain responses during food choices between equally liked 
high and low calorie foods. Food choice compared to non-
food choice evoked stronger activation in the left insula, 
superior temporal sulcus, posterior cingulate gyrus and 
(pre) cuneus(26). Huerta et al conducted a meta-analysis 
of neural responses to visual food cues. They showed 
that regions that lay within the visual system proper 

(occipital lobe) have significant activations. The most 
robust activation convergence was in the right fusiform 
gyrus. Lateralized convergent activations were observed 
in the left insula, right postcentral gyrus, right precuneus, 
left inferior frontal gyrus, left middle occipital gyrus and 
left hippocampus. Bilateral convergent activations were 
seen in the fusiform gyrus, declive, parahippocampus and 
superior temporal gyrus(27).

A new Bayesian GLM approach was proposed and 
applied on cortical surface fMRI data from the Human 
Connectome Project (HCP). They mapped the volumetric 
fMRI data to the cortical surface manifold then used INLA 
for computational approximation(10). 

In this study, INLA-SPDE approach was used for analysis 
of volumetric fMRI data. Most of the Bayesian methods 
for volumetric fMRI reduce computational trouble by using 
variational Bayes(VB); however, VB underestimates 
posterior variance so INLA approach was used as in the 
study of Mejia et al. INLA is a computationally efficient but 
highly accurate approximation Bayesian inference tool. 
Since INLA is less computationally demanding than MCMC, 
it gave the researchers capability of fitting a complex 
model based on flexible SPDE spatial processes in order 
to consider spatial correlation of voxels appropriately.

In this study, we considered only some areas in PFC, 
one can assess whole brain in response to food stimuli 
to find more related regions. Also, single subject analysis 
was conducted in the current research, for future works 
group analysis could be considered using multi subject 
Bayesian GLM approach proposed by Mejia et al. Based 
on literature, the genetic and environmental factors 
influence on self-regulation’s development, so in addition 
to fMRI data, by collecting genetic information from this 
experiment, additional research could be done to assess 
the self-regulation cognitive process by considering and 
modifying genetic factors.

Conclusion

In conclusion, increased activations were observed in 
dorsolateral and medial prefrontal cortex, the inferior frontal 
gyrus and the mid-ventrolateral frontal cortex during viewing 
of palatable food versus non-food images. This suggests 
that self-regulation areas of people who are concerned 
about their weight, will be activated in confrontation with 
palatable foods. Although in the present study fMRI is used 
as a tool to study weight management, one of the goals 
will be to extend this research into the clinical area, such 
as developing pharmacological treatments for obesity, by 
means of assessing the fMRI response to administration 
of new drugs in obese populations.
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